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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

. -ADVANCE BESTRICTED REPORT

THE- EFVLCT oF FOMPPVSSIBILL Y OF TWO-DIMENSIONAL.
””ULNEL—NALL INTERFERENCE FOR A SYMMETRICAL AIRPOTL.

"By Gerald E. Nitzberg
SUMMARY

, The effective change in the velocity of flow past a
"wing section, caused by the presence of wind-tunrel walls,
is known for potential flow. Thig theory is extended by
:1nveot1gat10n of the two-dimensional " L,omb'r'e:ssﬂue flow
past a thin Rankine Oval. It ig shown that for a symmet-
rical section at zero angle of attack the velocity incre-
ment dve to the tunnel wallsg in the anompresslbl case
mugt be multiplied by the factor l/l *® to take account
of compressibility effects. The Mach number, M, corre-
sponds to conditions in the wind-tunnel test section with
the model removed.

" INTRODUCTION

Present day high-gspeed operation of wind tunnels
renders it important to study the effects of compressidbil-
ity on the tunnel-wall interference. Several studies of
the two-dimensional inviscid compressible flow in an in-
finite stream over sections derivable from a circle have
been made. Two recent papers have demonstrated a2 method
for extending these studies to flow bounded by a channel.
Brnest Lamla (reference 1) considered the incompressibdle
potential flow past & circular cylinder in a channel as
a first order approximation and used the Janzen-Rayieigh
method to find the compressible-iaviscid flow past the
circular cylinder in a channel. Vou Hantzsche and Wendt
(reference 2) have extended Lamlaig study to the special
fanily of ellipses in a channel having a maximum incom-
pressible velocity past their surface equal to twice the
free stream velocity.

These special cases are far removed from the usual
conditions of wind-tunnel experimentation. A Rankine Oval
having a thickness ratio com.drab‘e to a symmetrical
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airfoil section gives a reasonable representation of the
effects of profile thickness on the tunnel-wall velocity
corrections for -an airfoil. 4. Fage (reference 3) reports
the sclution,by §ir Richard Giazebrook,of the incompress-

‘ible potential flow over a Rankine Oval in a channel.

The present repocrt takes this solution as a first order
approximation and applies an analysis paralleling that of
Lamla's to find the~two-dimensibhal:compressib;e;inviscid
flow past a thin Rankine Oval in a channel.

THEEORY

In the Janzen-Reyleigh method (reference 1), the
general stream function, and thus the velocity V. at
any point in the flow, ig expressed ag an infiinite seriesg
function of the free stream Mach number X {corregpond-

.inz to the free stream velocity * ¥V _j, as

V= §1Wnﬁ?

n
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where

~

The potential flow siream function

o satisfies

.' : . . a,. - . B L . . caa .
~lLaplace's equation AW, ='C. Introducing the conditions
. of cortinuous and: irrotational flow, leads to ’

vﬁA%@ ‘= 2 lréw5 §K°.+'aW° BKO] - 7K A(l)
oo 2ex ox 3y dy )

" Therefore the second approximation to.the general stream
" function: o S : :

- \ T
V=Y, + V¥V ¥ .

‘can be found from the first -approximation WV = VY.



For adiabatic changes, to the order of N,
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and

-consequently

P~ K, - ! )

— =1 4+ T M

p , 2
where
P fluid density at any point in the stream
po "fluid density in the undisgturbed stream
PS fiuid-density at stagnation point

The x velocity component at any point in the flow is

X 2 o0y +

VoooP, sy A, Ay (R, - 1) 3, e ‘
x o SV - C% o ‘%o oy 1y (2)
Vo P ¥ 03y 3y 2 3y -

when terms having powers of ‘M greater than the sqguare
are neglected.

ANALYSIS

The potential stream function for a Rankine Oval
symmetrically placed in a channel (reference 3) is

sinh r sin m ]

Vo =y + A tan ' {
' cosh ¥ - cosh r cos m -

where
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sinh r sin (Ef}

2 tan? /
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and all: angWes must be taken to lie betweer o and 1.

.

thlckxess of tne Ranb¢ne ‘Oval

distance between source and sink producing Rankine
Oval

velocity of undigturbed stream

21X 21y s
~== m = —, = I
"H .. ... H ' E

breadihb of chaniisl

coord:uate Leasdred along axis of the channel (major
axis of oval) and hav11ﬁ the origin mldway between
.-,,oarce L~nd sink L .- o-oo o

_coordinate ueasured perpendicular to the axis of the
' chaunel: and having the origian midway between the
tunnel va‘ls

Applying eguation (1) gives

3 2
2 2T S ZE :
Ay, = ~== sin m.{~5 cosh 1 === (COQn r cosh 1 - cos )
i \D 0
-~z {cosh | - cosk r cos m) sinh | + = cosh y}
| s D
where o
E = 202 ginh r
2 ’ 2

D

]

(cost: | = cdsh‘r.cos m) + (sinh r sin m)

To solve this partial differential equation by Lamla'sg
method, it is necessary to obtain cog. m as a finite
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series in D, r, 4&and
Thig imposes the limit
For the sake of simpli
is a small quantity.
having the for

Y, = - —
1 21

Then obtain the functi
in the two expressions

! from the preceding cquation.

{cosh®r
city set
Consider

5

- 1) -mast be less than 1.
cosh r =1+ e, -where e
a solution of equation (1)

(1) siﬁrm-

p=1 .

ons &p A
for A%y,

P72

) by equating those terms
1

which have the same

povers of D. If ‘terms in e® arée néglected
b= -E 1 ginm
2m.
where - .
. .
1 = $F . 4B cosh U+ (E/2) V1sginh U . (1 - cosh 21)
- ) D 3/2
De

' doE . 4, E 4 n2l 5

e e cosh B

) B B e
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-0n the surface of‘the Rankine GCval Y, = 6; this provides

the conditions necessa

of the QOval axes can b

“This-completely determ
"calculate the velocity

cownonent*

_ _ ry for evaluating the two constants
do and d;. PFor convenience the coordinates for the ends

e uged

2

hen (
“m
ines V¥,

0, m = 1L
H

(o
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-1 _ .
cosk (-E + cosh r

and it is now possible to

at any point in the flow from egqua-
tion (2) (and the analogous eguation for the y wvelocity

lhe characteristic point on the Rankine Oval may bve

taken to be the point

{; - Ej} + M
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Lanla's result for a circle is the special case obtained
from equation (3) by taking e = o.

It can be shown that

w7 ‘3“\ ' 3:'l..2e ' g ,  '
N e -<%§,;;d e (/9 T ()
and o
’ ‘\ A~1“"' o
Lios) ga___@} = b (t/s) (5)

=0

The most frequent appllcptlono have g thlckness ratlo,

t/c, lessg than C. ‘3, where'
t/s

’-1 + t/s
ST eetTi(w/e) T

oje

utheféfbfév(4) would be negligible in comparison--with- (5)

since a. and.-- b --are of the same order. In such casges
it is unnecessary to evaluate Wl and -

ORIt 3.5 ST

D% _' D—é B \3 D X=0

" In reference 2 it is shown that for an eliipse having t/c

less than C.3, in a channel with breadth so chosen as to
give at x=0 the incompressible velocity nast the ellipse

of twice the free stream velocity, ( j> is very nearly
o o 07" x=0 '

2+3M . Tor O. 5 tnlckuess ratio the velocity at =x=o0 past

a Rankine Oval is within 10 percent of thau past a . ellipse.

In equation (6) set M=o, and take

- " : e N
NV im0 iz &~ p¥. -

or
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then

2
2+3NM

(%)
Vo/z=0

which gives a check on the validity of equation (8),.

A furtner simplification in the application of equa-
tion (8) is

B\ ~2(t/s)[1+e/ (14+(t/8)}%) ] :
D2’ _ g I 2 t/s 4.t .8 2
=0 (14 (s/s) ) |m - ._?_“___<1__<£> +2(1- (5%
- ) 2 3 S - b . S -
: 1-(t/¢)
Comparison of thls valwe with table I, reference S, showsg
that for M=o, t g 1legs than 0.4, and /E ic¢gs than C.5,
the values for <_~> check within 0.1 percent. If a=n

Y
accuracy of 0.5 percent ig sufficient, ecuationr (7) can De
reduced to :

2t o (TEY
/_E_]_.\ - _._.TZ.E_;._.... i + LH_./‘ <...__.J_.__.__.._\:l {8)
\35/__ . 2% 12 1 - ggj
x=0 - e e

Setting equation (8) in (6) it follows that at =z=o
the velocity past the Rankiune Oval is

. meN

\ - __ig____-rrl. \T-v / / %t..ﬂc N\

<VK/X:° . sl T - zt/ﬂc)]
TT‘C

+ Mf"[;_?_t_/_ng_., (o %’2 <1 » 200} (9)

ﬂo/d



within the limits t/c less than 0.30 and c¢/H 1less than
1/4. From equaiion (9) it is seen that the velocity past

the Rankine Oval at =x=o in an infinite stream (% = g)
N
is a function of Mach number, therefore in calculating the

tunnel velocity correction it is necessary to consider the
Mack number correction (reference 1)

+ r 2t/ "
( ;\”_ —g—ffij; Ll + (M + AM)? <—~—ECES~—j>1 (10)
/=81 gy, 1 - Bt/ 7"

wrltlng equation (9) in the form of equation (10)
gives as the tunnel velocity correction for thin bodies

@ aen@ @) )

Vo/x=0 12 c/

In reference 1, it iz demonstrated that for a circie
] ) .

(ﬂ_s> o
) él) [+ il yw) NE/
Vo /=0 12

Tuig gives an indication of the magnitude of change in the
miltiplying constant of M~ for very thick bodies.

Ia reference 3 it is shown that for c/H less than
0.5, the percentage tunnel velocity correction for all
points on the body is mnearly constant. If this limit is
exceeded, thzs restrictior of the tunnel walls causes a
change in the effective shape of the body, becauss the
velocity correction varies from peint to point on tle sur-
face of the cylinder.

A comparison of equation (11) with incompressible
fiow tunnel velocity correction as given in reference 4
shows that

2

A . N ArY - s
<Vo/ ._ - (1 + M 2 ) > (12)

compressible. Vo’incompressitle

The present development neglects powers of M greater
than the gguare. v ‘ ‘



The mathematical difficulties of extending the presg-
ent analysis to. higher Mach numbers are formidabdle.
However, an investigation of the flow characteristics at
iach numbers avproaching 1 suggests an extension of equa-
tioa (12). To thig end, consider the two-dimensional
flow past a thin gymmetrical airfoil in free air. The

onditions of conservation of massg, and adiabatic com-
presgsion lead to ‘

Y-1 2
1+ — M /1 + _l;\
1 M [ 2 _-% Kg ¥-1/ < (13)
1, K LT T L
1 4+ — M,
2

where t, and | are, respectively, the distances be-
tween the same two stream lineg ahead of the airfoil and
at the pesition of maximum velocity over the airfoil, The
velocities at these positions correspond to the Mach num-
‘bers Mg nd M. ¥ is the ratio of the specific heats

py

v
4

=4

The maximum velociiy past the surface of a thin sym-
mztrical section ig of t*e gsame magnitude as the velocity
ahead of the section. Therefore, for smalil Mach numbers,
equation (13) indicates that the distances betwesen gtream-
lines at these two DOSIth;s are inversely proportional
to their local Mach numbers. This correspounds.tc a natwral
contraction of the otr amllnbo. '

As the Mach numbers approach 1. -—— approaches 1.

. . [/
To demonstrate this, let 0
MO =1~ ¢ aad M =1~ 6,
where ¢ and § are swmall quantities. Thewn, siunce Y = 1.4

for ‘air, equation (13) can be writtexn

The physical significance of this relation is that in the
vicinity of the velocity of sound, the streamlines in
L

passing from the undisturbed stream over the airfoil gec-
tion would anct contract in free air. The nresence of
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tunnel wallg impoges a contraction, which alters the flow

markedly. To the order of accuracy of this repvort, 1 + M-

'is the seriecs equivalent to '__l;_ﬁ and tne Iatter form
' 1 - M- .
expresses the large magnitude of the conres31b111ty cor-

rection when M s8pprosches 1. Therefcre, it seems advig-
- s oz . ’ i \
avle to write equation {(12) »

compregsible 1 - # ®“incompressible.

This relation was derived for a thin Rankine Oval
and indicates the order of correction for a thin gymmet-
rical airfoil sgection at zerc angle of attack in a two-
dlmenglonal wind tunnel. ’ ' -

Ames Aeronautical Laboratory, ‘
Hational Advisory Committee for Acronautlcs,
Moffett Field, Calif.-
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